miércoles, 12 de octubre de 2011

conexion estrella

La conexión en estrella y triángulo en un circuito para un motor trifásico, se emplea para lograr un rendimiento óptimo en el arranque de un motor. Por ejemplo, si tenemos un motor trifásico, y este es utilizado para la puesta en marcha de turbinas de ventilación que tienen demasiado peso, pero deben desarrollar una rotación final de alta velocidad, deberemos conectar ese motor trifásico con un circuito que nos permita cumplir con los requerimientos de trabajo. Hemos observado, más de una vez, que los motores que poseen mucha carga mecánica, como el ejemplo anterior, les cuesta comenzar a girar y terminar de desarrollar su velocidad final. Para ello, se cuenta con la conexión estrella-triángulo o estrella-delta.


Conexion delta

En la actualidad es muy comun encontrarnos con los transformadores electricos,  basta con salir de nuestras casas y mirar en los postes del tendido electrico para poder observarlos, tambien en las subestaciones y plantas generadoras de electricidad. El transformador  Es una maquina electrica de las mas utilizadas en el area de la ingenieria electrica, por lo que resulta indispensable su estudio. El transformador electrico monofasico consta generalmente de dos embobinados y se basa en el principio de la induccion electromagnetica, es decir cuando en una bobina primaria es atravesada por una corriente variable se crea un flujo magnetico variable el cual se induce en la otra bobina llamado secundario y se crea un voltaje inducido que puede ser mayor o menoral de entrada.

Basicamente existen 4 tipos de conexiones con los transforadores trifasico, ya sea formados a partir de tres transformadores monofasicos o de un solo transformador trifasico. Las cuales son: Conexión estrella-estrella, estrella-delta, delta-delta, delta-estrella. La conexión delta-delta de transformadores monofásicos se usa generalmente en sistemas cuyos voltajes no son muy elevados especialmente en aquellos en que se debe mantener la continuidad de unos sistemas. Esta conexión se emplea tanto para elevar la tensión como para reducirla.

Se analizaran las reaciones de voltaje y corriente para la onexion dela-delta yfinalmente se cocluira sobre el funionamiento de  esta conexion.

Electricidad

LA ELECTRICIDAD ES UN FLUJO DE ELECTRONES
Es la base del funcionamiento de muchas máquinas, desde pequeños electrodomésticos hasta sistemas de gran potencia como los trenes de alta velocidad, y de todos los dispositivos electrónicos. Además es esencial para la producción de sustancias químicas como el aluminio y el cloro.

viernes, 30 de septiembre de 2011

Mi presentacion

Mi nombre es Jose Alberto Villalobos Torres tengo 16 años, estudio en el Cet-mar # 14 de la ciudad de Puerto Peñasco, Sonora. Este blog esta hecho para la revision de trabajos del profesor Martín Alfredo Jiménez Becerra que me imparte la clase de submodulo # 1 de la carrera de Refrigeracion y climatizacion del grupo III A. Me gusta salir temprano de la escuela y No me gusta cuando salgo tarde de la escuela.
Espero que la informacion de este blog les pueda ser útil quedo a disposicion de ustedes para cualquier comentario, duda o sugerencia

válvula by-pass

La válvula hidráulica by-pass , que observamos en las ilustraciones cumplen propósitos generales en el control de la presión de un circuito hidráulico, pueden operar como contrabalanceo,  secuencia , descarga  y otras funciones requeridas por una válvula de dos vías operada .
En la fig. 5.11 en su parte A vemos el corte básico de una válvula de by-pass sin retención incorporada para el libre flujo en sentido inverso. Un uso común para estas válvulas es descarga de bombas, en estos casos el flujo siempre es de la entrada a la salida, y nunca en dirección opuesta.

COMPRESOR ABIERTO

Los primeros modelos de compresores de refrigeración fueron de este tipo. Con los pistones y cilindros sellados en el interior de un Cárter y un cigüeñal extendiéndose a través del cuerpo hacia afuera para ser accionado por alguna fuerza externa. Tiene un sello en torno del cigüeñal que evita la pérdida de refrigerante y aceite del comprsor.
Desventajas:
Mayor peso
Costo superior
Mayor tamaño
Vulnerabilidad a fallas de los sellos
Difícil alineación del cigüeñal
Ruido excesivo
Corta vida de las bandas o componentes de acción directa
Este compresor ha sido reemplazado por el moto-compresor de tipo semihermético y hermético, y su uso continua disminuyendo a excepción de aplicaciones especializadas como es el acondicionamiento de aire para automóviles

COMPRESOR SEMIABIERTO

Este tipo de compresores fue iniciado por Copeland y es utilizado ampliamente en los populares modelos Copelametic. El compresor es accionado por un motor eléctrico montado directamente en el cigüeñal del compresor, con todas sus partes, tanto del motor como del compresor, herméticamente selladas en el interior de una cubierta común.
Se eliminan los trastornos del sello, los motores pueden calcularse específicamente para la carga que han de accionar, y el diseño resultante es compacto, económico, eficiente y básicamente no requiere mantenimiento. Las cabezas cubiertas del estator, placas del fondo y cubiertas de Carter son desmontables permitiendo el acceso para sencillas reparaciones en el caso de que se deteriore el compresor.

COMPRESOR HERMETICO

Este fue desarrollado en un esfuerzo para lograr una disminución de tamaño y costo y es ampliamente utilizado en equipo unitario de escasa potencia. Como en el caso del moto-compresor semihermético, el motor eléctrico se encuentra montado directamente en el cigüeñal del compresor, pero el cuerpo es una carcaza metálica sellada con soldadura. En esti tipo de compresores no pueden llevarse acabo reparaciones interiores puesto que la única manera de abrirlos es cortar la carcaza del compresor.
Velocidad del compresor.
Los primeros modelos de compresores de diseñaron para funcionar a una velocidad relativamente reducida, bastante inferiores a 1000 rpm. Para utilizar los motores eléctricos estándar de cuatro polos se introdujo el funcionamiento de los moto-compresores herméticos y semiherméticos a 1750 rpm (1450 rpm en 50 ciclos).
La creciente demanda de equipo de acondicionamiento de aire mas compacto y menor peso ha forzado el desarrollo de moto-compresores herméticos con motores de dos polos que funcionan a 3500 rpm (2900 rpm en 50 ciclos).
Las aplicaciones especializadas para acondicionamiento de aire en aviones, automóviles y equipo militar, utilizan compresores de mayor velocidad, aunque para la aplicación comercial normal y doméstica el suministro de energía eléctrica existente de 60 ciclos limita generalmente la velocidad de los compresores a la actualmente disponible de 1750 y 3500 rpm.
Las velocidades superiores producen problemas de lubricación y duración. Y estos factores, así como el costo, tamaño y peso deben ser considerados en el diseño y aplicación del compresor.

MIRILLA



Función: Es la ventana al interior del sistema para reconocer si las condiciones del refrigerante son
adecuadas para la operación del sistema; por una parte nos muestra si el refrigerante está totalmente líquido
antes de entrar a la válvula de expansión (requerimiento indispensable), y si está libre de humedad, La
humedad crea obstrucciones en la VTE y produce acidez en el refrigerante. No debe haber burbujas en el
visor.
Aplicación: En todo sistema de refrigeración. Por economía no se acostumbra en sistemas pequeños
(fraccionarios).
Localización: En la línea de líquido.

Válvula check

Válvula check
Función: Permite el flujo solo en un sentido, indicado por la flecha impresa en la válvula.
Aplicación: Depende de cada necesidad. En el caso de la figura, servirá para que cuando la unidad
condensadora esté parada, en un bajo ambiente exterior, el refrigerante que se condensa solo vaya hacia el
tanque recibidor y no hacia el separador ya que si tal fuera el caso, habría líquido en el fondo del separador
de aceite y al abrir la valvulita flotadora regresaría líquido al cárter en vez de aceite.
Localización: en cualquier parte que se pueda requerir.

Válvula manual

Función: Cortar o permitir el flujo manualmente. Por su diseño ofrece alguna caída de presión.
Aplicación: En cualquier sistema de refrigeración.
Localización: En cualquier parte del sistema donde se requiera. Mayormente se usa en la línea de líquido
después del deshidratador y el indicador de líquido.

Válvula solenoide.

Función: Cortar o permitir el flujo eléctricamente, lo que permite el control automático remoto del flujo de
refrigerante.
Aplicación: Fundamentalmente en la línea de líquido, tanto para control de operación, como para
protección contra golpes de líquido, También el la línea de gas caliente para deshielo del evaporador, o para
control de capacidad, y en la línea de succión para servicio y/o control en sistemas de refrigeración en
paralelo. La forma de selección para la aplicaciones de gas es diferente.
Localización: En cualquier lugar del sistema de refrigeración donde se requiera.
Nota: Al igual que es importante la adecuada selección de cualquiera de los accesorios, en el caso de las
válvulas solenoide es muy importante, ya que si la válvula es muy chica para la capacidad requerida,
ocasionará una gran caída de presión y por lo tanto pérdida de capacidad del sistema, y si se selecciona muy
grande, podría no operar ya que estas requieren una mínima caída de presión de operación para poder
permanecer abiertas; muchas válvulas son devueltas por garantía porque al parecer no funcionan y resulta
que están buenas, sólo que fueron mal seleccionadas. También es importante insistir que las válvulas
solenoide deben ser seleccionadas por su capacidad en toneladas y el tipo de refrigerante antes que por el
diámetro de la conexión; de otra manera, pudiera ser que la válvula resultara muy chica e hiciera que el
sistema pierda capacidad.

Acumulador de Succión.

Función: Protege al compresor contra regresos eventuales de refrigerante líquido.
Aplicación: Todo sistemas de baja temperatura, particularmente aquellos con sistema de deshielo por gas
caliente. Todo sistema sujeto a posibles regresos de líquido al compresor, por ejemplo, cuando están
sujetos a variaciones de carga térmica.
Localización: En la línea de succión, antes del compresor.

valvula de expancion termostatica con igualador externo.


Tal como se mencionó antes, cuando existe caída de presión a través del evaporador, la presión que debe actuar bajo el diafragma es la de la salida del evaporador; por lo que una válvula con igualador interno no operaría satisfactoriamente, como se explicará más adelante. Las válvulas que se utilizan en estos casos, son válvulas con «igualador externo». En este tipo de válvulas el igualador no comunica al diafragma con la entrada del evaporador, sino que este conducto se saca del cuerpo de la válvula mediante una conexión, la cual generalmente es de ¼" flare. Además, es necesario colocar empaques alrededor de las varillas.

Válvulas de Thermo Expansión
Empuja, para aislar completamente la parte inferior del diafragma de la presión a la entrada del evaporador. Una vez instalada la válvula, esta conexión se comunica a la línea de succión mediante un tubo capilar, para que la presión que actúe debajo del diafragma, sea la de la salida del evaporador.

Igualación de presión exterior
Si se usan distribuidores de líquido, siempre deberá emplearse válvulas de expansión con igualación de presión exterior.
El uso de distribuidores de líquido causa generalmente una caída de presión de 1 bar en el distibuidor y en el tubo del mismo.  Estas válvulas siempre deberán utilizarse en instalaciones de refrigeración con evaporadores
compactos de pequeño tamaño, como p.ej. intercambiadores de calor de placa, donde la caída de presión siempre será más elevado que la presión correspondiente a 2K.

VÁLVULA DE EXPANSIÓN TERMOSTATICA

VÁLVULA DE EXPANSIÓN TERMOSTATICA

Controla mediante un orificio el flujo del refrigerante líquido en el evaporador, según se requiera, mediante un vástago y asiento de tipo de aguja que varía la abertura.
La aguja esta controlada por un diafragma sujeto a tres fuerzas. La presión del evaporador es ejercida debajo del diafragma y tiende a cerrar la válvula. La fuerza del resorte de sobre-calentamiento es ejercida debajo del diafragma en la dirección de cierre. Opuesta a estas dos fuerzas se encuentra la presión ejercida por la carga en el bulbo térmico que está unido al tubo de succión a la salida del evaporador; esta carga, es el mismo refrigerante que está siendo utilizado en el sistema.

Con la unidad en funcionamiento el refrigerante en el evaporador se evapora a presión y temperatura de saturación. Durante el tiempo que el bulbo térmico esté expuesto a una temperatura superior, éste ejercerá una presión más elevada que la del refrigerante en el evaporador y, por consiguiente, el efecto neto de estas dos presiones producirá la apertura de la válvula. El resorte de sobre-calentamiento tiene una presión fija que hace que la válvula se cierre siempre que la diferencia neta entre la presión de bulbo y la presión del evaporador sea inferior a la fijada para el resorte de sobre-calentamiento.

A medida que se eleva la temperatura del gas refrigerante que abandona el evaporador (un aumento en el sobre-calentamiento) la presión ejercida por el bulbo térmico colocado en la salida del serpentín se aumenta y el flujo a través de la válvula de expansión aumenta; a medida que la temperatura del gas disminuye (una disminución del sobre-calentamiento) decrece la presión ejercida por el bulbo térmico y la válvula de expansión se cierra ligeramente disminuyendo el flujo.

PRESOSTATO

El presostato también es conocido como interruptor de presión. Es un aparato que cierra o abre un circuito eléctrico dependiendo de la lectura de presión de un fluido.
El fluido ejerce una presión sobre un pistón interno haciendo que se mueva hasta que se unen dos contactos. Cuando la presión baja un resorte empuja el pistón en sentido contrario y los contactos se separan.
Un tornillo permite ajustar la sensibilidad de disparo del presostato al aplicar más o menos fuerza sobre el pistón a través del resorte. Usualmente tienen dos ajustes independientes: la presión de encendido y la presión de apagado.
No deben ser confundidos con los transductores de presión (medidores de presión), mientras estos últimos entregan una señal variable en base al rango de presión, los presostatos entregan una señal apagado/encendido únicamente

Presostato de Baja Presión

En términos generales, un presóstato es un dispositivo que mantiene constante la presión de un fluido en una canalización o un depósito.
La operación mecánica de un control de baja presión es la misma que cuando se hace uso de un interruptor “conectado-desconectado” para parar y arrancar el sistema.
El control de baja presión interrumpe el funcionamiento del compresor a una presión de operación mínima determinada previamente, de modo que actúa como un control de seguridad que protege contra las relaciones de compresión extremas, el congelamiento en el evaporador, así como de la entrada de aire y de vapor de agua que resultan de fugas o entradas por el lado de baja. Un presóstato actúa por medio de un fuelle o diafragma conectado a un interruptor eléctrico por un lado y por el otro a la presión del refrigerante
( en este caso en el lado de baja presión) . Además de estos dispositivos existe los reguladores de la línea de succión.

PRESOSTATO DE ALTA

 El presostato de alta es un elemento de seguridad que  tiene la función de parar la instalación cuando la presión  de ésta es excesiva o si disminuye. La escala principal es de parada y suele poner "ALTO" al compresor . 

PRESOSTATO COMBINADO

Es un aparato que cierra o abre un circuito eléctrico dependiendo de la lectura de presión de un fluido.
El presostato combinad es aquel el que tiene el presostato de alta y el presostato de baja drentra de el.


ELIMINADOR DE VIBRACIONES

Un eliminador de vibracion se encuentra en todas las medidas de tuberia para refrigeracion, sirve para evitar que las soldaduras se ragen por la vibracion  que genera el compresor y se pueden encontrar mas frecuentemente lo mas pegado al compresor.

PRESOSTATO DE ACEITE

El preostato de aceite lleva dos circuitos, uno fluidrico y otro electrico. el fluidrico se conecta al carter del compresor o aspiracion de la bomba de aceite y a la descarga de la bomba de aceite.
El circuito electrico a su vez lo podemos dividir en dos , uno la alimentacion del presostato y otro la alimantacion del rele del compresor que es normalmente cerrado. El presostato solo se alimenta cuando esta funciona do el compresor.
Mediante un sistema electronico o termico(antiguos) y un cntacto actuado por la NO diferencia de presiones entre la aspiracion y la descarga de la bomba es por lo que al cabo de un tiempo de tener alimentacion y no existir diferencia ded presiones actua sobre la limentacion del rele y para el compresor, su rearme suele ser manual 

TIMER INDUSTRIAL

El timer es como un boton automatica que se clica solo por medio del intervalo, pero en diferencia que el timer de un refrigerador domestico a uno industrial es que el domestico biene programado en los interbalos de descongelacion y descongelacion. 
El comercial lo que tiene es que tu puedes programarlo.

LA VALVULA DE 3 VIAS

LA VALVULA DE 3 VIAS FUNCIONA DE ESTA MANERA
CUANDO EL BASTAGO ESTA EN MEDIO TIENES CONECCION CON EL COMPRESOR LA VALVULA DE SERVICIO Y LA TUBERIA.

Recibidor de liquido

Utilizados para almacenar refrigerante líquido en las instalaciones frigoríficas, estos equipos deben ser de tamaño adecuado al volumen de refrigerante de la instalación, las conexiones y válvulas de entrada y salida de refrigerante se dimensionan para no provocar pérdidas de cargas o interferencias.

valvula de expancion termostatica con igualador interno

valvula de expancion termostatica con igualador interno
en sistemas pequeños donde no se considera caída de presión a través del evaporador, la presión del evaporador que se usa para que actúe debajo del diafragma es la de la entrada. Para esto, las válvulas empleadas, tienen maquinado un conducto interno que comunica el lado de baja presión de la válvula con laparte inferior del diafragma. A este conducto se le conoce como igualador Interno. En algunos tipos de válvulas, la presión del evaporador también se aplica bajo el diafragma, a través de los conductos de las varillas de empuje.

valbula de dos pasos

valbula de dos pasos
se le llama asi por que solo o deja pasar el liquido refrigerante o le detiene el paso pues su nombre lo dice esta es una valvula sencilla como la que encontraos en la regadera o en la llave de la casa.

Separador de aceite

La trampa de aceite en aires acondicionados y sistemas de refrigeracion es utilizada cuando la unidad exterior se encuentra arriba de la unidad interior dicha trampa evita que el aceite del compresor se acumule en la uniadad interior, evitando que rinda menos y que la vida etil del compresor sea menor por la perdida de aceite. 

INTERCAMBIADOR DE CALOR

INTERCAMBIADOR DE CALOR
Un intercambiador de calor es un dispositivo diseñado para transferir calor entre dos medios, que estén separados por una barrera o que se encuentren en contacto. Son parte esencial de los dispositivos de refrigeración, acondicionamiento de aire, producción de energía y procesamiento químico.

FILTRO DESIDRATADOR

FILTRO DESIDRATADOR
SIRVE PARA QUE EL SISTEMA DE REFRIGERACION DE CUALQUIER COSA ESTE LIBRE HUEMEDAD, EN SU INTERIOR. EN SU INTERIOR CONTIENEN SILICA QUE SIRVE PARA RETENER LA HUMEDAD

miércoles, 7 de septiembre de 2011

Separador de aceite




El separador de aceite es un dispositivo diseñado para
separar el aceite lubricante del refrigerante, antes que
entre a otros componentes del sistema y regresarlo al
cárter del compresor.

martes, 5 de julio de 2011

Realizacion de un refrigerador domestico ``Duplex``

 SEP.      SEMS.    DGECyTM.
Centros De Estudios Tecnológicos Del Mar  # 14.


Proyecto Final.
Refrigeración y Climatización II A.
Construcción Del Refrigerador.

Alumno:

Villalobos  Torres José Alberto.




Puerto Peñasco Sonora  A  24/junio/2011.


En el equipo donde forme parte para construir el proyecto en la materia de “Refrigeración y Climatización” realizamos un prototipo en el tema de “Refrigeración Domestica” donde el proyecto fue un Refrigerador Dúplex donde  se realizaron varias etapas, es decir, se realizo con un procedimiento del cual les mostrare como fue que construimos nuestro prototipo.
En primera parte, tenemos que tener el material necesario para hacerlo, los materiales que utilizamos para nuestro proyecto fueron:
  ž   Madera
  ž   Tornillos
  ž   Evaporador
  ž   Condensador
  ž   Tuvo Capilar
  ž   Filtro Deshidratador
  ž   Timer
  ž   Termostato
  ž   Compresor
  ž   Relay
  ž   Capacitor
  ž   Ventilador De Evaporador
  ž   Resistencia De Descongelación
  ž   Protector Térmico
  ž   Protector Térmico De Resistencia De Descongelación
  ž   Foco
  ž   Interruptor De Puerta
  ž   Cable
  ž   Aislante
  ž   Refrigerante 134 A
  ž   Tuvo Flexible De Cobre
  ž   Soldaduras (De Plata y De Bronce)
  ž   Reloj

Donde en la fabricación se utilizaron diversas herramientas.






Primeramente realizamos los cálculos y trazos para un corte perfecto para nuestro prototipo, donde se presenta que estamos realizando el corte de madera.
















Después de tener todos los tramos cortados, con el taladro se colocan los tornillos para armar la carcasa del refrigerador.




De esta manera, ya finalizada la base, podemos continuar con los siguientes pasos.












Se introduce el circuito eléctrico, revisando que este todo en orden después de colocarlo en su lugar, tanto el termostato, el timer, el foco y su interruptor por la parte de adentro, como lo de afuera que seria el relay, protector térmico y capacitor


















Nuestro equipo utilizo hielo seco como aislante, así, que tuvimos que calcular para cortar de medida precisa el aislante que se colocaría en cada parte.












Después de tener todos los tramos cortados, colocamos en su lugar el aislante.


Así, de esta manera ya terminamos la base del refrigerador con aislante y el circuito eléctrico del cual lleva este prototipo.






















Para realizar el sistema mecanos necesitamos corta tubos para unir los componentes y dar paso al refrigerante.



















Del cual se utilizo realizar expansionados para entrelazar las tuberías.















Terminados los expansionados, colocamos las piezas en su lugar y realizamos la soldadura en cada una de ellas.
















Finalmente ya colocadas todas las piezas se realizo el vacio, para así poder introducir el refrigerante.












Terminado el refrigerador, continuamos con la estética, así pintando el refrigerador.


















De esta manera nuestro “Refrigerador Dúplex“quedo listo para exponerse en la expo tecnológica del cetmar #14